Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 4/2017

08.02.2017 | Review Article

Track-weighted imaging methods: extracting information from a streamlines tractogram

verfasst von: Fernando Calamante

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

A whole-brain streamlines data-set (so-called tractogram) generated from diffusion MRI provides a wealth of information regarding structural connectivity in the brain. Besides visualisation strategies, a number of post-processing approaches have been proposed to extract more detailed information from the tractogram. One such approach is based on exploiting the information contained in the tractogram to generate track-weighted (TW) images. In the track-weighted imaging (TWI) approach, a very large number of streamlines are often generated throughout the brain, and an image is then computed based on properties of the streamlines themselves (e.g. based on the number of streamlines in each voxel, or their average length), or based on the values of an associated image (e.g. a diffusion anisotropy map, a T2 map) measured at the coordinates of the streamlines. This review article describes various approaches used to generate TW images and discusses the flexible formalism that TWI provides to generate a range of images with very different contrast, as well as the super-resolution properties of the resulting images. It also explains how this approach provides a powerful means to study structural and functional connectivity simultaneously. Finally, a number of key issues for its practical implementation are discussed.
Fußnoten
1
Throughout this work, the terms “streamline” and “track” are used interchangeably, to represent a mathematical representation (i.e. a three-dimensional curve generated using a tractography algorithm). In contrast, the terms “tract” and “white matter pathway” are also used interchangeably to represent the actual biological structure in the brain.
 
2
The TOI is equivalent to the commonly used region of interest (ROI), for the particular case that its extent is determined by the volume occupied by a set of streamlines (typically corresponding to a given white matter structure).
 
3
ACM and FDM are essentially similar to TDI at native resolution (i.e. without applying super-resolution).
 
4
In the TDI analogy as a histogram map, super-resolution can be seen as the fact that the bin size (i.e. voxel size) can be, to some extent, arbitrarily chosen.
 
5
The term “fixel” was introduced in that paper to refer to a specific fibre population within a single voxel.
 
Literatur
2.
Zurück zum Zitat Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269CrossRefPubMed Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269CrossRefPubMed
3.
Zurück zum Zitat Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427CrossRefPubMedPubMedCentral Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Tournier J-D, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66CrossRef Tournier J-D, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66CrossRef
5.
Zurück zum Zitat Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757CrossRefPubMed Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757CrossRefPubMed
6.
Zurück zum Zitat Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran J-P (2007) Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2:e597CrossRefPubMedPubMedCentral Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran J-P (2007) Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2:e597CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80:426–444CrossRefPubMed Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80:426–444CrossRefPubMed
8.
Zurück zum Zitat Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16:159–172CrossRefPubMed Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16:159–172CrossRefPubMed
9.
Zurück zum Zitat Correia S, Lee SY, Voorn T, Tate DF, Paul RH, Zhang S, Salloway SP, Malloy PF, Laidlaw DH (2008) Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI. Neuroimage 42:568–581CrossRefPubMedPubMedCentral Correia S, Lee SY, Voorn T, Tate DF, Paul RH, Zhang S, Salloway SP, Malloy PF, Laidlaw DH (2008) Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI. Neuroimage 42:568–581CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Berman JI, Mukherjee P, Partridge SC, Miller SP, Ferriero DM, Barkovich AJ, Vigneron DB, Henry RG (2005) Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 27:862–871CrossRefPubMed Berman JI, Mukherjee P, Partridge SC, Miller SP, Ferriero DM, Barkovich AJ, Vigneron DB, Henry RG (2005) Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 27:862–871CrossRefPubMed
11.
Zurück zum Zitat Jones DK, Travis AR, Eden G, Pierpaoli C, Basser PJ (2005) PASTA: pointwise assessment of streamline tractography attributes. Magn Reson Med 53:1462–1467CrossRefPubMed Jones DK, Travis AR, Eden G, Pierpaoli C, Basser PJ (2005) PASTA: pointwise assessment of streamline tractography attributes. Magn Reson Med 53:1462–1467CrossRefPubMed
12.
Zurück zum Zitat Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM (2012) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7:e49790CrossRefPubMedPubMedCentral Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM (2012) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7:e49790CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Colby JB, Soderberg L, Lebel C, Dinov ID, Thompson PM, Sowell ER (2012) Along-tract statistics allow for enhanced tractography analysis. Neuroimage 59:3227–3242CrossRefPubMed Colby JB, Soderberg L, Lebel C, Dinov ID, Thompson PM, Sowell ER (2012) Along-tract statistics allow for enhanced tractography analysis. Neuroimage 59:3227–3242CrossRefPubMed
14.
Zurück zum Zitat Mezer A, Yeatman JD, Stikov N, Kay KN, Cho N-J, Dougherty RF, Perry ML, Parvizi J, Hua LH, Butts-Pauly K, Wandell BA (2013) Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nat Med 19:1667–1672CrossRefPubMedPubMedCentral Mezer A, Yeatman JD, Stikov N, Kay KN, Cho N-J, Dougherty RF, Perry ML, Parvizi J, Hua LH, Butts-Pauly K, Wandell BA (2013) Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nat Med 19:1667–1672CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Travis KE, Golden NH, Feldman HM, Solomon M, Nguyen J, Mezer A, Yeatman JD, Dougherty RF (2015) Abnormal white matter properties in adolescent girls with anorexia nervosa. Neuroimage Clin 9:648–659CrossRefPubMedPubMedCentral Travis KE, Golden NH, Feldman HM, Solomon M, Nguyen J, Mezer A, Yeatman JD, Dougherty RF (2015) Abnormal white matter properties in adolescent girls with anorexia nervosa. Neuroimage Clin 9:648–659CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Batchelor PG, Calamante F, Tournier J-D, Atkinson D, Hill DLG, Connelly A (2006) Quantification of the shape of fiber tracts. Magn Reson Med 55:894–903CrossRefPubMed Batchelor PG, Calamante F, Tournier J-D, Atkinson D, Hill DLG, Connelly A (2006) Quantification of the shape of fiber tracts. Magn Reson Med 55:894–903CrossRefPubMed
17.
Zurück zum Zitat Calamante F, Tournier J-D, Smith RE, Connelly A (2012) A generalised framework for super-resolution track-weighted imaging. Neuroimage 59:2494–2503CrossRefPubMed Calamante F, Tournier J-D, Smith RE, Connelly A (2012) A generalised framework for super-resolution track-weighted imaging. Neuroimage 59:2494–2503CrossRefPubMed
18.
Zurück zum Zitat Embleton K, Morris D, Haroon H, Lambon Ralph M (2007) Anatomica Connectivity Mapping. Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 15th Annual Meeting, Berlin, Germany, (pp 19–25 May 1548) Embleton K, Morris D, Haroon H, Lambon Ralph M (2007) Anatomica Connectivity Mapping. Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 15th Annual Meeting, Berlin, Germany, (pp 19–25 May 1548)
19.
Zurück zum Zitat Calamante F, Tournier J-D, Jackson GD, Connelly A (2010) Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage 53:1233–1243CrossRefPubMed Calamante F, Tournier J-D, Jackson GD, Connelly A (2010) Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage 53:1233–1243CrossRefPubMed
20.
Zurück zum Zitat Bozzali M, Parker GJM, Serra L, Embleton K, Gili T, Perri R, Caltagirone C, Cercignani M (2011) Anatomical connectivity mapping: a new tool to assess brain disconnection in Alzheimer’s disease. Neuroimage 54:2045–2051CrossRefPubMed Bozzali M, Parker GJM, Serra L, Embleton K, Gili T, Perri R, Caltagirone C, Cercignani M (2011) Anatomical connectivity mapping: a new tool to assess brain disconnection in Alzheimer’s disease. Neuroimage 54:2045–2051CrossRefPubMed
21.
Zurück zum Zitat Stadlbauer A, Buchfelder M, Salomonowitz E, Ganslandt O (2010) Fiber density mapping of gliomas: histopathologic evaluation of a diffusion-tensor imaging data processing method. Radiology 257:846–853CrossRefPubMed Stadlbauer A, Buchfelder M, Salomonowitz E, Ganslandt O (2010) Fiber density mapping of gliomas: histopathologic evaluation of a diffusion-tensor imaging data processing method. Radiology 257:846–853CrossRefPubMed
22.
Zurück zum Zitat Pannek K, Mathias JL, Bigler ED, Brown G, Taylor JD, Rose SE (2011) The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology. Neuroimage 55:133–141CrossRefPubMed Pannek K, Mathias JL, Bigler ED, Brown G, Taylor JD, Rose SE (2011) The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology. Neuroimage 55:133–141CrossRefPubMed
23.
Zurück zum Zitat Calamante F, Tournier J-D, Heidemann RM, Anwander A, Jackson GD, Connelly A (2011) Track density imaging (TDI): validation of super resolution property. Neuroimage 56:1259–1266CrossRefPubMed Calamante F, Tournier J-D, Heidemann RM, Anwander A, Jackson GD, Connelly A (2011) Track density imaging (TDI): validation of super resolution property. Neuroimage 56:1259–1266CrossRefPubMed
24.
Zurück zum Zitat Calamante F, Tournier J-D, Kurniawan ND, Yang Z, Gyengesi E, Galloway GJ, Reutens DC, Connelly A (2012) Super-resolution track-density imaging studies of mouse brain: comparison to histology. Neuroimage 59:286–296CrossRefPubMed Calamante F, Tournier J-D, Kurniawan ND, Yang Z, Gyengesi E, Galloway GJ, Reutens DC, Connelly A (2012) Super-resolution track-density imaging studies of mouse brain: comparison to histology. Neuroimage 59:286–296CrossRefPubMed
25.
Zurück zum Zitat Pajevic S, Pierpaoli C (2000) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 43:921CrossRefPubMed Pajevic S, Pierpaoli C (2000) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 43:921CrossRefPubMed
26.
Zurück zum Zitat Dhollander T, Smith R, Tournier J-D, Jeurissen B, Connelly A (2015) Time to move on: an FOD-based DEC map to replace DTI’s trademark DEC FA. Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM), 23rd Annual Meeting, Toronto, Canada 1027 Dhollander T, Smith R, Tournier J-D, Jeurissen B, Connelly A (2015) Time to move on: an FOD-based DEC map to replace DTI’s trademark DEC FA. Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM), 23rd Annual Meeting, Toronto, Canada 1027
27.
Zurück zum Zitat Calamante F, Oh S-H, Tournier J-D, Park S-Y, Son Y-D, Chung J-Y, Chi J-G, Jackson GD, Park C-W, Kim Y-B, Connelly A, Cho Z-H (2013) Super-resolution track-density imaging of thalamic substructures: comparison with high-resolution anatomical magnetic resonance imaging at 7.0T. Hum Brain Mapp 34:2538–2548CrossRefPubMed Calamante F, Oh S-H, Tournier J-D, Park S-Y, Son Y-D, Chung J-Y, Chi J-G, Jackson GD, Park C-W, Kim Y-B, Connelly A, Cho Z-H (2013) Super-resolution track-density imaging of thalamic substructures: comparison with high-resolution anatomical magnetic resonance imaging at 7.0T. Hum Brain Mapp 34:2538–2548CrossRefPubMed
28.
Zurück zum Zitat Cho ZH, Calamante F, Chi JG (2015) 7.0 Tesla MRI brain white matter atlas, 2nd edn. Springer, New York Cho ZH, Calamante F, Chi JG (2015) 7.0 Tesla MRI brain white matter atlas, 2nd edn. Springer, New York
29.
Zurück zum Zitat Hoch MJ, Chung S, Ben-Eliezer N, Bruno MT, Fatterpekar GM, Shepherd TM (2016) New clinically feasible 3T MRI protocol to discriminate internal brain stem anatomy. Am J Neuroradiol 37:1058–1065CrossRefPubMedPubMedCentral Hoch MJ, Chung S, Ben-Eliezer N, Bruno MT, Fatterpekar GM, Shepherd TM (2016) New clinically feasible 3T MRI protocol to discriminate internal brain stem anatomy. Am J Neuroradiol 37:1058–1065CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Wenz H, Al-Zghloul M, Hart E, Kurth S, Groden C, Förster A (2016) Track-density imaging of the human brainstem for anatomic localization of fiber tracts and nerve nuclei in Vivo: initial experience with 3-T magnetic resonance imaging. World Neurosurg 93:286–292CrossRefPubMed Wenz H, Al-Zghloul M, Hart E, Kurth S, Groden C, Förster A (2016) Track-density imaging of the human brainstem for anatomic localization of fiber tracts and nerve nuclei in Vivo: initial experience with 3-T magnetic resonance imaging. World Neurosurg 93:286–292CrossRefPubMed
31.
Zurück zum Zitat Palesi F, Tournier J-D, Calamante F, Muhlert N, Castellazzi G, Chard D, D’Angelo E, Wheeler-Kingshott CAM (2015) Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct Funct 220:3369–3384CrossRefPubMed Palesi F, Tournier J-D, Calamante F, Muhlert N, Castellazzi G, Chard D, D’Angelo E, Wheeler-Kingshott CAM (2015) Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct Funct 220:3369–3384CrossRefPubMed
32.
Zurück zum Zitat Kurniawan ND, Richards KL, Yang Z, She D, Ullmann JFP, Moldrich RX, Liu S, Yaksic JU, Leanage G, Kharatishvili I, Wimmer V, Calamante F, Galloway GJ, Petrou S, Reutens DC (2014) Visualization of mouse barrel cortex using ex vivo track density imaging. Neuroimage 87:465–475CrossRefPubMed Kurniawan ND, Richards KL, Yang Z, She D, Ullmann JFP, Moldrich RX, Liu S, Yaksic JU, Leanage G, Kharatishvili I, Wimmer V, Calamante F, Galloway GJ, Petrou S, Reutens DC (2014) Visualization of mouse barrel cortex using ex vivo track density imaging. Neuroimage 87:465–475CrossRefPubMed
33.
Zurück zum Zitat Richards K, Calamante F, Tournier J-D, Kurniawan ND, Sadeghian F, Retchford AR, Jones GD, Reid CA, Reutens DC, Ordidge R, Connelly A, Petrou S (2014) Mapping somatosensory connectivity in adult mice using diffusion MRI tractography and super-resolution track density imaging. Neuroimage 102(Pt 2):381–392CrossRefPubMed Richards K, Calamante F, Tournier J-D, Kurniawan ND, Sadeghian F, Retchford AR, Jones GD, Reid CA, Reutens DC, Ordidge R, Connelly A, Petrou S (2014) Mapping somatosensory connectivity in adult mice using diffusion MRI tractography and super-resolution track density imaging. Neuroimage 102(Pt 2):381–392CrossRefPubMed
34.
Zurück zum Zitat Ullmann JFP, Calamante F, Collin SP, Reutens DC, Kurniawan ND (2015) Enhanced characterization of the zebrafish brain as revealed by super-resolution track-density imaging. Brain Struct Funct 220:457–468CrossRefPubMed Ullmann JFP, Calamante F, Collin SP, Reutens DC, Kurniawan ND (2015) Enhanced characterization of the zebrafish brain as revealed by super-resolution track-density imaging. Brain Struct Funct 220:457–468CrossRefPubMed
35.
Zurück zum Zitat Hamaide J, De Groof G, Van Steenkiste G, Jeurissen B, Van Audekerke J, Naeyaert M, Van Ruijssevelt L, Cornil C, Sijbers J, Verhoye M, Van der Linden A (2016) Exploring sex differences in the adult zebra finch brain: in vivo diffusion tensor imaging and ex vivo super-resolution track density imaging. Neuroimage. doi:10.1016/j.neuroimage.2016.09.067 Hamaide J, De Groof G, Van Steenkiste G, Jeurissen B, Van Audekerke J, Naeyaert M, Van Ruijssevelt L, Cornil C, Sijbers J, Verhoye M, Van der Linden A (2016) Exploring sex differences in the adult zebra finch brain: in vivo diffusion tensor imaging and ex vivo super-resolution track density imaging. Neuroimage. doi:10.​1016/​j.​neuroimage.​2016.​09.​067
36.
Zurück zum Zitat Tournier J-D, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472CrossRefPubMed Tournier J-D, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472CrossRefPubMed
37.
Zurück zum Zitat Farquharson S, Tournier J-D, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, Connelly A (2013) White matter fiber tractography: why we need to move beyond DTI. J Neurosurg 118:1367–1377CrossRefPubMed Farquharson S, Tournier J-D, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, Connelly A (2013) White matter fiber tractography: why we need to move beyond DTI. J Neurosurg 118:1367–1377CrossRefPubMed
38.
Zurück zum Zitat Smith RE, Tournier J-D, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62:1924–1938CrossRefPubMed Smith RE, Tournier J-D, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62:1924–1938CrossRefPubMed
39.
Zurück zum Zitat Smith RE, Tournier J-D, Calamante F, Connelly A (2013) SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312CrossRefPubMed Smith RE, Tournier J-D, Calamante F, Connelly A (2013) SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312CrossRefPubMed
40.
Zurück zum Zitat Reisert M, Mader I, Anastasopoulos C, Weigel M, Schnell S, Kiselev V (2011) Global fiber reconstruction becomes practical. Neuroimage 54:955–962CrossRefPubMed Reisert M, Mader I, Anastasopoulos C, Weigel M, Schnell S, Kiselev V (2011) Global fiber reconstruction becomes practical. Neuroimage 54:955–962CrossRefPubMed
41.
Zurück zum Zitat Daducci A, Dal Palú A, Descoteaux M, Thiran J-P (2016) Microstructure Informed Tractography: pitfalls and open challenges. Front Neurosci 10:247CrossRefPubMedPubMedCentral Daducci A, Dal Palú A, Descoteaux M, Thiran J-P (2016) Microstructure Informed Tractography: pitfalls and open challenges. Front Neurosci 10:247CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, Glasser MF, Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub E, Lenglet C, Van Essen DC, Ugurbil K, Behrens TEJ, WU-Minn HCP Consortium (2013) Advances in diffusion MRI acquisition and processing in the human connectome project. Neuroimage 80:125–143CrossRefPubMedPubMedCentral Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, Glasser MF, Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub E, Lenglet C, Van Essen DC, Ugurbil K, Behrens TEJ, WU-Minn HCP Consortium (2013) Advances in diffusion MRI acquisition and processing in the human connectome project. Neuroimage 80:125–143CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth RD, Kinney HC, Wald LL (2013) The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80:234–245CrossRefPubMed McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth RD, Kinney HC, Wald LL (2013) The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80:234–245CrossRefPubMed
44.
Zurück zum Zitat Jeurissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J (2014) Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103:411–426CrossRefPubMed Jeurissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J (2014) Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103:411–426CrossRefPubMed
45.
Zurück zum Zitat Smith RE, Tournier J-D, Calamante F, Connelly A (2015) SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119:338–351CrossRefPubMed Smith RE, Tournier J-D, Calamante F, Connelly A (2015) SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119:338–351CrossRefPubMed
46.
Zurück zum Zitat Smith RE, Tournier J-D, Calamante F, Connelly A (2015) The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. Neuroimage 104:253–265CrossRefPubMed Smith RE, Tournier J-D, Calamante F, Connelly A (2015) The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. Neuroimage 104:253–265CrossRefPubMed
47.
Zurück zum Zitat Daducci A, Dal Palù A, Lemkaddem A, Thiran J-P (2015) COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging 34:246–257CrossRefPubMed Daducci A, Dal Palù A, Lemkaddem A, Thiran J-P (2015) COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging 34:246–257CrossRefPubMed
48.
Zurück zum Zitat Girard G, Whittingstall K, Deriche R, Descoteaux M (2014) Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98:266–278CrossRefPubMed Girard G, Whittingstall K, Deriche R, Descoteaux M (2014) Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98:266–278CrossRefPubMed
49.
Zurück zum Zitat Jones DK (2010) Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med 2:341–355CrossRef Jones DK (2010) Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med 2:341–355CrossRef
50.
Zurück zum Zitat Li L, Rilling JK, Preuss TM, Glasser MF, Hu X (2012) The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography. Hum Brain Mapp 33:1894–1913CrossRefPubMed Li L, Rilling JK, Preuss TM, Glasser MF, Hu X (2012) The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography. Hum Brain Mapp 33:1894–1913CrossRefPubMed
51.
Zurück zum Zitat Barajas RF, Hess CP, Phillips JJ, Von Morze CJ, Yu JP, Chang SM, Nelson SJ, McDermott MW, Berger MS, Cha S (2013) Super-resolution track density imaging of glioblastoma: histopathologic correlation. Am J Neuroradiol 34:1319–1325CrossRefPubMedPubMedCentral Barajas RF, Hess CP, Phillips JJ, Von Morze CJ, Yu JP, Chang SM, Nelson SJ, McDermott MW, Berger MS, Cha S (2013) Super-resolution track density imaging of glioblastoma: histopathologic correlation. Am J Neuroradiol 34:1319–1325CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Stadlbauer A, Hammen T, Grummich P, Buchfelder M, Kuwert T, Dörfler A, Nimsky C, Ganslandt O (2011) Classification of peritumoral fiber tract alterations in gliomas using metabolic and structural neuroimaging. J Nucl Med 52:1227–1234CrossRefPubMed Stadlbauer A, Hammen T, Grummich P, Buchfelder M, Kuwert T, Dörfler A, Nimsky C, Ganslandt O (2011) Classification of peritumoral fiber tract alterations in gliomas using metabolic and structural neuroimaging. J Nucl Med 52:1227–1234CrossRefPubMed
53.
Zurück zum Zitat Ziegler E, Rouillard M, André E, Coolen T, Stender J, Balteau E, Phillips C, Garraux G (2014) Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson’s disease. Neuroimage 99:498–508CrossRefPubMedPubMedCentral Ziegler E, Rouillard M, André E, Coolen T, Stender J, Balteau E, Phillips C, Garraux G (2014) Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson’s disease. Neuroimage 99:498–508CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Bozzali M, Parker GJM, Spanò B, Serra L, Giulietti G, Perri R, Magnani G, Marra C, Vita GM, Caltagirone C, Cercignani M (2013) Brain tissue modifications induced by cholinergic therapy in Alzheimer’s disease. Hum Brain Mapp 34:3158–3167CrossRefPubMed Bozzali M, Parker GJM, Spanò B, Serra L, Giulietti G, Perri R, Magnani G, Marra C, Vita GM, Caltagirone C, Cercignani M (2013) Brain tissue modifications induced by cholinergic therapy in Alzheimer’s disease. Hum Brain Mapp 34:3158–3167CrossRefPubMed
55.
Zurück zum Zitat Bozzali M, Spanò B, Parker GJM, Giulietti G, Castelli M, Basile B, Rossi S, Serra L, Magnani G, Nocentini U, Caltagirone C, Centonze D, Cercignani M (2013) Anatomical brain connectivity can assess cognitive dysfunction in multiple sclerosis. Mult Scler 19:1161–1168CrossRefPubMed Bozzali M, Spanò B, Parker GJM, Giulietti G, Castelli M, Basile B, Rossi S, Serra L, Magnani G, Nocentini U, Caltagirone C, Centonze D, Cercignani M (2013) Anatomical brain connectivity can assess cognitive dysfunction in multiple sclerosis. Mult Scler 19:1161–1168CrossRefPubMed
56.
Zurück zum Zitat Lyksborg M, Siebner HR, Sørensen PS, Blinkenberg M, Parker GJM, Dogonowski A-M, Garde E, Larsen R, Dyrby TB (2014) Secondary progressive and relapsing remitting multiple sclerosis leads to motor-related decreased anatomical connectivity. PLoS One 9:e95540CrossRefPubMedPubMedCentral Lyksborg M, Siebner HR, Sørensen PS, Blinkenberg M, Parker GJM, Dogonowski A-M, Garde E, Larsen R, Dyrby TB (2014) Secondary progressive and relapsing remitting multiple sclerosis leads to motor-related decreased anatomical connectivity. PLoS One 9:e95540CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Tan XL, Wright DK, Liu S, Hovens C, O’Brien TJ, Shultz SR (2016) Sodium selenate, a protein phosphatase 2A activator, mitigates hyperphosphorylated tau and improves repeated mild traumatic brain injury outcomes. Neuropharmacology 108:382–393CrossRefPubMed Tan XL, Wright DK, Liu S, Hovens C, O’Brien TJ, Shultz SR (2016) Sodium selenate, a protein phosphatase 2A activator, mitigates hyperphosphorylated tau and improves repeated mild traumatic brain injury outcomes. Neuropharmacology 108:382–393CrossRefPubMed
58.
Zurück zum Zitat Vaessen MJ, Saj A, Lovblad K-O, Gschwind M, Vuilleumier P (2016) Structural white-matter connections mediating distinct behavioral components of spatial neglect in right brain-damaged patients. Cortex 77:54–68CrossRefPubMed Vaessen MJ, Saj A, Lovblad K-O, Gschwind M, Vuilleumier P (2016) Structural white-matter connections mediating distinct behavioral components of spatial neglect in right brain-damaged patients. Cortex 77:54–68CrossRefPubMed
59.
Zurück zum Zitat Stadlbauer A, Ganslandt O, Salomonowitz E, Buchfelder M, Hammen T, Bachmair J, Eberhardt K (2012) Magnetic resonance fiber density mapping of age-related white matter changes. Eur J Radiol 81:4005–4012CrossRefPubMed Stadlbauer A, Ganslandt O, Salomonowitz E, Buchfelder M, Hammen T, Bachmair J, Eberhardt K (2012) Magnetic resonance fiber density mapping of age-related white matter changes. Eur J Radiol 81:4005–4012CrossRefPubMed
60.
Zurück zum Zitat Woodworth D, Mayer E, Leu K, Ashe-McNalley C, Naliboff BD, Labus JS, Tillisch K, Kutch JJ, Farmer MA, Apkarian AV, Johnson KA, Mackey SC, Ness TJ, Landis JR, Deutsch G, Harris RE, Clauw DJ, Mullins C, Ellingson BM, MAPP Research Network (2015) Unique Mmicrostructural changes in the brain associated with urological chronic pelvic pain syndrome (UCPPS) revealed by diffusion tensor MRI, super-resolution track density imaging, and statistical parameter mapping: a MAPP network neuroimaging study. PLoS One 10:e0140250CrossRefPubMedPubMedCentral Woodworth D, Mayer E, Leu K, Ashe-McNalley C, Naliboff BD, Labus JS, Tillisch K, Kutch JJ, Farmer MA, Apkarian AV, Johnson KA, Mackey SC, Ness TJ, Landis JR, Deutsch G, Harris RE, Clauw DJ, Mullins C, Ellingson BM, MAPP Research Network (2015) Unique Mmicrostructural changes in the brain associated with urological chronic pelvic pain syndrome (UCPPS) revealed by diffusion tensor MRI, super-resolution track density imaging, and statistical parameter mapping: a MAPP network neuroimaging study. PLoS One 10:e0140250CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Ellingson BM, Salamon N, Woodworth DC, Holly LT (2015) Correlation between degree of subvoxel spinal cord compression measured with super-resolution tract density imaging and neurological impairment in cervical spondylotic myelopathy. J Neurosurg Spine 22:631–638CrossRefPubMed Ellingson BM, Salamon N, Woodworth DC, Holly LT (2015) Correlation between degree of subvoxel spinal cord compression measured with super-resolution tract density imaging and neurological impairment in cervical spondylotic myelopathy. J Neurosurg Spine 22:631–638CrossRefPubMed
62.
Zurück zum Zitat Willats L, Raffelt D, Smith RE, Tournier J-D, Connelly A, Calamante F (2013) Quantification of track-weighted imaging (TWI): characterisation of within-subject reproducibility and between-subject variability. Neuroimage 87:18–31CrossRefPubMed Willats L, Raffelt D, Smith RE, Tournier J-D, Connelly A, Calamante F (2013) Quantification of track-weighted imaging (TWI): characterisation of within-subject reproducibility and between-subject variability. Neuroimage 87:18–31CrossRefPubMed
63.
Zurück zum Zitat Calamante F, Smith RE, Tournier J-D, Raffelt D, Connelly A (2015) Quantification of voxel-wise total fibre density: investigating the problems associated with track-count mapping. Neuroimage 117:284–293CrossRefPubMed Calamante F, Smith RE, Tournier J-D, Raffelt D, Connelly A (2015) Quantification of voxel-wise total fibre density: investigating the problems associated with track-count mapping. Neuroimage 117:284–293CrossRefPubMed
64.
Zurück zum Zitat Calamante F (2016) Super-resolution track density imaging: anatomic detail versus quantification. Am J Neuroradiol 37:1066–1067CrossRefPubMed Calamante F (2016) Super-resolution track density imaging: anatomic detail versus quantification. Am J Neuroradiol 37:1066–1067CrossRefPubMed
65.
Zurück zum Zitat Besseling RMH, Jansen JFA, Overvliet GM, Vaessen MJ, Braakman HMH, Hofman PAM, Aldenkamp AP, Backes WH (2012) Tract specific reproducibility of tractography based morphology and diffusion metrics. PLoS One 7:e34125CrossRefPubMedPubMedCentral Besseling RMH, Jansen JFA, Overvliet GM, Vaessen MJ, Braakman HMH, Hofman PAM, Aldenkamp AP, Backes WH (2012) Tract specific reproducibility of tractography based morphology and diffusion metrics. PLoS One 7:e34125CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Bloy L, Ingalhalikar M, Batmanghelich NK, Schultz RT, Roberts TPL, Verma R (2012) An integrated framework for high angular resolution diffusion imaging-based investigation of structural connectivity. Brain Connect 2:69–79CrossRefPubMedPubMedCentral Bloy L, Ingalhalikar M, Batmanghelich NK, Schultz RT, Roberts TPL, Verma R (2012) An integrated framework for high angular resolution diffusion imaging-based investigation of structural connectivity. Brain Connect 2:69–79CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Pannek K, Mathias JL, Rose SE (2011) MRI diffusion indices sampled along streamline trajectories: quantitative tractography mapping. Brain Connect 1:331–338CrossRefPubMed Pannek K, Mathias JL, Rose SE (2011) MRI diffusion indices sampled along streamline trajectories: quantitative tractography mapping. Brain Connect 1:331–338CrossRefPubMed
68.
Zurück zum Zitat Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254CrossRefPubMed Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254CrossRefPubMed
69.
Zurück zum Zitat Raffelt D, Tournier J-D, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly A (2012) Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59:3976–3994CrossRefPubMed Raffelt D, Tournier J-D, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly A (2012) Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59:3976–3994CrossRefPubMed
70.
Zurück zum Zitat Dell’Acqua F, Simmons A, Williams SCR, Catani M (2013) Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Hum Brain Mapp 34:2464–2483CrossRefPubMed Dell’Acqua F, Simmons A, Williams SCR, Catani M (2013) Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Hum Brain Mapp 34:2464–2483CrossRefPubMed
71.
Zurück zum Zitat Raffelt DA, Smith RE, Ridgway GR, Tournier J-D, Vaughan DN, Rose S, Henderson R, Connelly A (2015) Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage 117:40–55CrossRefPubMedPubMedCentral Raffelt DA, Smith RE, Ridgway GR, Tournier J-D, Vaughan DN, Rose S, Henderson R, Connelly A (2015) Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage 117:40–55CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Pannek K, Raffelt D, Salvado O, Rose S (2012) Incorporating directional information in diffusion tractography derived maps: angular track imaging (ATI). Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 20th Annual Meeting, Toronto, Canada, vol 1912, pp 5–11 Pannek K, Raffelt D, Salvado O, Rose S (2012) Incorporating directional information in diffusion tractography derived maps: angular track imaging (ATI). Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 20th Annual Meeting, Toronto, Canada, vol 1912, pp 5–11
73.
Zurück zum Zitat Dhollander T, Emsell L, Van Hecke W, Maes F, Sunaert S, Suetens P (2014) Track orientation density imaging (TODI) and track orientation distribution (TOD) based tractography. Neuroimage 94:312–336CrossRefPubMed Dhollander T, Emsell L, Van Hecke W, Maes F, Sunaert S, Suetens P (2014) Track orientation density imaging (TODI) and track orientation distribution (TOD) based tractography. Neuroimage 94:312–336CrossRefPubMed
74.
Zurück zum Zitat Bell C, Pannek K, Fay M, Thomas P, Bourgeat P, Salvado O, Gal Y, Coulthard A, Crozier S, Rose S (2014) Distance informed track-weighted imaging (diTWI): a framework for sensitising streamline information to neuropathology. Neuroimage 86:60–66CrossRefPubMed Bell C, Pannek K, Fay M, Thomas P, Bourgeat P, Salvado O, Gal Y, Coulthard A, Crozier S, Rose S (2014) Distance informed track-weighted imaging (diTWI): a framework for sensitising streamline information to neuropathology. Neuroimage 86:60–66CrossRefPubMed
75.
Zurück zum Zitat Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C (2012) Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. Neuroimage 61:275–288CrossRefPubMed Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C (2012) Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. Neuroimage 61:275–288CrossRefPubMed
76.
Zurück zum Zitat Calamante F, Son Y-D, Tournier J-D, Ryu T-H, Oh S-H, Connelly A, Cho Z-H (2012) Fusing PET and MRI Data Using super-resolution track-weighted imaging. Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 20th Annual Meeting, Toronto, Canada, vol 1919, pp 5–11 Calamante F, Son Y-D, Tournier J-D, Ryu T-H, Oh S-H, Connelly A, Cho Z-H (2012) Fusing PET and MRI Data Using super-resolution track-weighted imaging. Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 20th Annual Meeting, Toronto, Canada, vol 1919, pp 5–11
77.
Zurück zum Zitat Smith S (2013) Introduction to the NeuroImage special issue “Mapping the Connectome”. Neuroimage 80:1CrossRefPubMed Smith S (2013) Introduction to the NeuroImage special issue “Mapping the Connectome”. Neuroimage 80:1CrossRefPubMed
78.
Zurück zum Zitat Calamante F, Masterton RAJ, Tournier J-D, Smith RE, Willats L, Raffelt D, Connelly A (2013) Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural–functional connections in the brain. Neuroimage 70:199–210CrossRefPubMed Calamante F, Masterton RAJ, Tournier J-D, Smith RE, Willats L, Raffelt D, Connelly A (2013) Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural–functional connections in the brain. Neuroimage 70:199–210CrossRefPubMed
79.
Zurück zum Zitat Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J, Handwerker DA, Keilholz S, Kiviniemi V, Leopold DA, de Pasquale F, Sporns O, Walter M, Chang C (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378CrossRefPubMed Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J, Handwerker DA, Keilholz S, Kiviniemi V, Leopold DA, de Pasquale F, Sporns O, Walter M, Chang C (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378CrossRefPubMed
80.
Zurück zum Zitat Calamante F, Smith RE, Liang X, Zalesky A, Connelly A (2016) Track-weighted dynamic functional connectivity (TW-dFC): a new method to study dynamic connectivity. In: Proceedings of the international society for magnetic resonance in medicine (ISMRM), 24th Annual Meeting, Singapore, vol 308, pp 7–13 Calamante F, Smith RE, Liang X, Zalesky A, Connelly A (2016) Track-weighted dynamic functional connectivity (TW-dFC): a new method to study dynamic connectivity. In: Proceedings of the international society for magnetic resonance in medicine (ISMRM), 24th Annual Meeting, Singapore, vol 308, pp 7–13
81.
Zurück zum Zitat Mori S, van Zijl PCM (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480CrossRefPubMed Mori S, van Zijl PCM (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480CrossRefPubMed
82.
Zurück zum Zitat Lazar M, Alexander AL (2003) An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations. Neuroimage 20:1140–1153CrossRefPubMed Lazar M, Alexander AL (2003) An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations. Neuroimage 20:1140–1153CrossRefPubMed
83.
Zurück zum Zitat Tournier J-D, Calamante F, King MD, Gadian DG, Connelly A (2002) Limitations and requirements of diffusion tensor fiber tracking: an assessment using simulations. Magn Reson Med 47:701–708CrossRefPubMed Tournier J-D, Calamante F, King MD, Gadian DG, Connelly A (2002) Limitations and requirements of diffusion tensor fiber tracking: an assessment using simulations. Magn Reson Med 47:701–708CrossRefPubMed
84.
Zurück zum Zitat Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632CrossRefPubMed Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632CrossRefPubMed
85.
Zurück zum Zitat Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821CrossRefPubMed Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821CrossRefPubMed
86.
Zurück zum Zitat Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMed Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefPubMed
87.
Zurück zum Zitat Hayasaka S, Nichols TE (2004) Combining voxel intensity and cluster extent with permutation test framework. Neuroimage 23:54–63CrossRefPubMed Hayasaka S, Nichols TE (2004) Combining voxel intensity and cluster extent with permutation test framework. Neuroimage 23:54–63CrossRefPubMed
Metadaten
Titel
Track-weighted imaging methods: extracting information from a streamlines tractogram
verfasst von
Fernando Calamante
Publikationsdatum
08.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 4/2017
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0608-1

Weitere Artikel der Ausgabe 4/2017

Magnetic Resonance Materials in Physics, Biology and Medicine 4/2017 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.