Skip to main content
Log in

Techniques to study nephron function: microscopy and imaging

  • Molecular and Genomic Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Recent advances in optics, computer sciences, fluorophores, and molecular techniques allow investigators the opportunity to study dynamic events within the functioning kidney with subcellular resolution. Investigators can now use two-photon microscopy to follow several complex heterogenous processes in organs such as the kidney with high spacial and temporal resolution. Repeat determinations over time within the same animal are possible and minimize animal use and interanimal variability. Furthermore, the ability to obtain volumetric data (3D) makes quantitative 4D (time) analysis possible. Finally, use of multiple fluorophores concurrently allows for three different or interactive processes to be observed simultaneously. Therefore, this approach compliments existing molecular, biochemical, and pharmacologic techniques by advancing in vivo data analysis and interpretation to subcellular levels for molecules without the requirement for fixation. Its use in the kidney is in its infancy but offers much promise for unraveling the complex interdependent physiologic and pathophysiologic processes known to contribute to cell function and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ashworth SL, Tanner GA (2006) Fluorescent labeling of renal cells in vivo. Nephron Physiol 103:91–96

    Article  Google Scholar 

  2. Atkinson SJ (2006) Functional intravital imaging of leukocytes in animal models of renal injury. Nephron Physiol 103:86–90

    Article  Google Scholar 

  3. Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868

    Article  PubMed  CAS  Google Scholar 

  4. Clendenon JL, Byars JM, Hyink DP (2006) Image processing software for 3D light microscopy. Nephron Exp Nephrol 103:e50–e54

    Article  PubMed  Google Scholar 

  5. Clendenon JL, Phillips CL, Sandoval RM, Fang S, Dunn KW (2002) Voxx: a PC-based, near real-time volume rendering system for biological microscopy. Am J Physiol Cell Physiol 282:C213–C228

    PubMed  CAS  Google Scholar 

  6. Dunn KW, McGraw TE, Maxfield FR (1989) Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J Cell Biol 109:3303–3314

    Article  PubMed  CAS  Google Scholar 

  7. Dunn KW, Sandoval RM, Kelly KJ, Dagher PC, Tanner GA, Atkinson SJ, Bacallao RL, Molitoris BA (2002) Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol 283:C905–C916

    PubMed  CAS  Google Scholar 

  8. Dunn KW, Sandoval RM, Molitoris BA (2003) Intravital imaging of the kidney using multiparameter multiphoton microscopy. Nephron Exp Nephrol 94:e7–e11

    Article  PubMed  Google Scholar 

  9. Dunn KW, Young PA (2006) Principles of multiphoton microscopy. Nephron Exp Nephrol 103:e33–e40

    Article  PubMed  Google Scholar 

  10. Gerlich D, Ellenberg J (2003) 4D imaging to assay complex dynamics in live specimens. Nat Cell Biol 5(Suppl):S14–S19

    Google Scholar 

  11. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  PubMed  CAS  Google Scholar 

  12. Hadjantonakis AK, Dickinson ME, Fraser SE, Papaioannou VE (2003) Technicolour transgenics: imaging tools for functional genomics in the mouse. Nat Rev Genet 4:613–625

    Article  PubMed  CAS  Google Scholar 

  13. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  PubMed  CAS  Google Scholar 

  14. Horbelt M, Wotzlaw C, Sutton TA, Molitoris BA, Philipp T, Kribben A, Fandrey J, Pietruck F (2007) Organic cation transport in the rat kidney in vivo visualized by time-resolved two-photon microscopy. Kidney Int 72:422–429

    Article  PubMed  CAS  Google Scholar 

  15. Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC (2003) P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol 14:128–138

    Article  PubMed  CAS  Google Scholar 

  16. Kelly KJ, Sandoval RM, Dunn KW, Molitoris BA, Dagher PC (2003) A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis. Am J Physiol Cell Physiol 284:C1309–C1318

    PubMed  CAS  Google Scholar 

  17. Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol 5(Suppl):S1–S7

    Google Scholar 

  18. Molitoris BA, Sandoval RM (2005) Intravital multiphoton microscopy of dynamic renal processes. Am J Physiol Renal Physiol 288:F1084–F1089

    Article  PubMed  CAS  Google Scholar 

  19. Molitoris BA, Sandoval RM (2006) Pharmacophotonics: utilizing multi-photon microscopy to quantify drug delivery and intracellular trafficking in the kidney. Adv Drug Deliv Rev 58:809–823

    Article  PubMed  CAS  Google Scholar 

  20. Peti-Peterdi J (2005) Multiphoton imaging of renal tissues in vitro. Am J Physiol Renal Physiol 288:F1079–F1083

    Article  PubMed  CAS  Google Scholar 

  21. Peti-Peterdi J, Fintha A, Fuson AL, Tousson A, Chow RH (2004) Real-time imaging of renin release in vitro. Am J Physiol Renal Physiol 287:F329–F335

    Article  PubMed  CAS  Google Scholar 

  22. Phillips CL, Gattone VH 2nd, Bonsib SM (2006) Imaging glomeruli in renal biopsy specimens. Nephron Physiol 103:75–81

    Article  Google Scholar 

  23. Phillips CL, Miller KJ, Filson AJ, Nurnberger J, Clendenon JL, Cook GW, Dunn KW, Overbeek PA, Gattone VH 2nd, Bacallao RL (2004) Renal cysts of inv/inv mice resemble early infantile nephronophthisis. J Am Soc Nephrol 15:1744–1755

    Article  PubMed  Google Scholar 

  24. Sandoval RM, Kennedy MD, Low PS, Molitoris BA (2004) Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am J Physiol Cell Physiol 287:C517–C526

    Article  PubMed  CAS  Google Scholar 

  25. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  26. Sutton TA, Horbelt M, Sandoval RM (2006) Imaging vascular pathology. Nephron Physiol 103:82–85

    Article  Google Scholar 

  27. Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC (2005) Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am J Physiol Renal Physiol 288:F91–F97

    Article  PubMed  CAS  Google Scholar 

  28. Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA (2003) Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol 285:F191–F198

    PubMed  CAS  Google Scholar 

  29. Tanner GA, Sandoval RM, Molitoris BA, Bamburg JR, Ashworth SL (2005) Micropuncture gene delivery and intravital two-photon visualization of protein expression in rat kidney. Am J Physiol Renal Physiol 289:F638–F643

    Article  PubMed  CAS  Google Scholar 

  30. Teschemacher AG, Paton JF, Kasparov S (2005) Imaging living central neurones using viral gene transfer. Adv Drug Deliv Rev 57:79–93

    Article  PubMed  CAS  Google Scholar 

  31. van Roessel P, Brand AH (2002) Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nat Cell Biol 4:E15–E20

    Article  PubMed  Google Scholar 

  32. Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93:10763–10768

    Article  PubMed  CAS  Google Scholar 

  33. Yu W (2006) Quantitative microscopic approaches for studying kidney functions. Nephron Physiol 103:63–70

    Article  Google Scholar 

  34. Yu W, Sandoval RM, Molitoris BA (2004) A new concept of measuring glomerular permeability and molecular filtration rate in vivo with a fluorescence microscope (Abstract). J Am Soc Nephrol 15:211A

    Google Scholar 

  35. Yu W, Sandoval RM, Molitoris BA (2005) Quantitative intravital microscopy using a Generalized Polarity concept for kidney studies. Am J Physiol Cell Physiol 289:C1197–C1208

    Article  PubMed  CAS  Google Scholar 

  36. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by National Institutes of Health Grants P30 DK-79312, PO1 DK-53465, RO1 DK-069408 and a Veterans Affairs Merit Review (to B. A. Molitoris) and an Indiana Genomics Initiative (INGEN) grant from the Lilly Foundation to Indiana University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Molitoris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molitoris, B.A., Sandoval, R.M. Techniques to study nephron function: microscopy and imaging. Pflugers Arch - Eur J Physiol 458, 203–209 (2009). https://doi.org/10.1007/s00424-008-0629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0629-8

Keywords

Navigation