Skip to main content

Advertisement

Log in

Genome–environment interactions in the molecular pathogenesis of dilated cardiomyopathy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy (DCM) is a heart muscle disease characterized by impaired contractility and dilation of the ventricles. In a subset of DCM patients, classical inheritance patterns occur (familial DCM), which have led to the identification of specific genomic loci and gene defects causing monogenic DCM subtypes. In the majority of DCM patients, however, there is no evidence for a monogenic etiology of the disorder (sporadic DCM), and in the absence of other recognizable etiological factors, these cases were classified as “idiopathic”. Recent research suggests that cardiotropic viruses are important environmental factors in the pathogenesis of “idiopathic” cases and that DCM commonly results from interactions between genetic and environmental factors, whereas “pure” genetic forms are rather rare. Regarding genetics, the clinical cardiomyopathic phenotype associated with single gene defects may be highly variable for unknown reasons. Furthermore, a novel class of genetic defects was identified recently which provide a molecular basis for abnormal reactions of cardiomyocytes to environmental stress. These defects are paradigms of specific molecular links between genome and environment during the pathogenesis of DCM. Regarding environmental factors, a recent molecular virological study based on myocardial biopsies in a large series of sporadic DCM patients has detected cardiac viral infections in the majority of patients, with a broad spectrum of virus species being involved. Apparently, DCM does not only occur as a late sequela of acute viral myocarditis, but also in patients without clinical history of cardiac viral disease. Cardiotropic viruses thus emerge as prevalent environmental factors which may cause or influence the course of DCM in a large fraction of cases. Synopsis of current data suggests that a comprehensive picture of DCM pathogenesis can only be drawn if both genetic and environmental pathogenetic factors are considered. The course of cardiac viral infections depends strongly on genetic host factors and may range from rapid and complete virus elimination or silencing without clinical symptoms, to rapidly progressive or fatal disease. Viruses interact not only with genetically heterogenous host systems of virus uptake, migration, and antiviral immunity, but, due to their prevalence in DCM hearts, are also likely to encounter multiple structural proteins of cardiac cells known to be defective in familial DCM. The combined knowledge on DCM-associated gene defects and viruses therefore suggests in-depth studies on genome–environment interactions in DCM pathogenesis which may underlie the high clinical variability observed both in monogenic and virus-associated DCM and have implications for the clinical management of DCM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AdV:

adenovirus

ATD:

α1-antitrypsin deficiency

CAR:

coxsackievirus–adenovirus receptor

CMV:

cytomegalovirus

COPD:

chronic obstructive pulmonary disease

CVB3:

coxsackievirus B3

DAF:

decay accelerating factor

DCM:

dilated cardiomyopathy

EBV:

Epstein–Barr virus

EV:

enteroviruses (coxsackieviruses and echoviruses)

HCM:

hypertrophic cardiomyopathy

HCV:

hepatitis C virus

HHV6:

human herpes virus 6

InfA/B:

Influenza virus A/B

INFβ:

interferon-β

MLP:

muscle LIM protein

NBC:

nuclear pore complex

PVB19:

parvovirus B19

RCM:

restrictive cardiomyopathy

TLR:

toll-like receptor

References

  1. Eriksson S (1964) Pulmonary emphysema and α1-antitrypsin deficiency. Acta Med Scand 175:197–205

    CAS  PubMed  Google Scholar 

  2. Crystal R (1990) α1-antitrypsin deficiency, emphysema, and liver disease. J Clin Invest 85:1343–1352

    CAS  PubMed  Google Scholar 

  3. Poller W, Faber J-P, Olek K (1990) Highly variable clinical course in severe α1-antitrypsin deficiency—use of polymerase chain reaction for the detection of rare deficiency alleles. Klin Wochenschr 68:857–863

    Article  CAS  PubMed  Google Scholar 

  4. Stecenko A, Brigham K (2003) Gene therapy progress and prospects: α1 antitrypsin. Gene Ther 10:95–99

    Article  CAS  PubMed  Google Scholar 

  5. Eriksson S, Carlson J, Veley R (1986) Risk of cirrhosis and primary liver cancer in α1-antitrypsin deficiency. N Engl J Med 314:736–739

    CAS  PubMed  Google Scholar 

  6. Teckman J, Qu D, Perlmutter D (1996) Molecular pathogenesis of liver disease in α1-antitrypsin deficiency. Hepatology 24:1504–1516

    CAS  PubMed  Google Scholar 

  7. Wu Y, Whitman I, Molmenti E, Moore K, Hippenmeyer P, Perlmutter D (1994) A lag in intracellular degradation of mutant α1-antitrypsin correlates with the liver disease phenotype in homozygous PI ZZ α1-antitrypsin deficiency. Proc Natl Acad Sci U S A 91:9014–9018

    CAS  PubMed  Google Scholar 

  8. Franz W, Muller O, Katus H (2001) Cardiomyopathies: from genetics to the prospect of treatment. Lancet 358:1627–1637

    Article  CAS  PubMed  Google Scholar 

  9. Sylvius N, Duboscq-Bidot L, Bouchier C et al (2003) Mutational analysis of the β- and δ-sarcoglycan genes in a large number of patients with familial and sporadic dilated cardiomyopathy. Am J Med Genet 120A:8–12

    Article  Google Scholar 

  10. Sebillon P, Bouchier C, Bidot L et al (2003) Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet 40:560–567

    Article  CAS  PubMed  Google Scholar 

  11. Mogensen J, Murphy R, Shaw T et al (2004) Severe disease expression of cardiac troponin C and T mutations in patients with dilated cardiomyopathy. J Am Coll Cardiol 44:2033–2040

    Article  CAS  PubMed  Google Scholar 

  12. Kärkkäinen S, Heliö T, Miettinen R et al (2004) A novel mutation, Ser143Pro, in the lamin A/C gene is common in Finnish patients with familial dilated cardiomyopathy. Eur Heart J 25:885–893

    Article  PubMed  Google Scholar 

  13. Gomes A, Potter J (2004) Molecular and cellular aspects of troponin cardiomyopathies. Ann N Y Acad Sci 1015:214–224

    Article  CAS  PubMed  Google Scholar 

  14. Mogensen J, Kubo T, Duque M et al (2003) Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest 111:209–216

    Article  CAS  PubMed  Google Scholar 

  15. Murphy R, Mogensen J, Shaw A, Kubo T, Hughes S, McKenna W (2004) Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet 363:371–372

    Article  CAS  PubMed  Google Scholar 

  16. Brito D, Richard P, Isnard R, Pipa J, Komajda M, Madeira H (2003) Familial hypertrophic cardiomyopathy: the same mutation, different prognosis. Comparison of two families with a long follow-up. Rev Port Cardiol 22:1445–1461

    PubMed  Google Scholar 

  17. Knöll R, Hoshijima M, Hoffman H et al (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111:943–955

    Article  PubMed  Google Scholar 

  18. Mahon N, Madden B, Caforio A et al (2002) Immunohistologic evidence of myocardial disease in apparently healthy relatives of patients with dilated cardiomyopathy. J Am Coll Cardiol 39:455–462

    Article  PubMed  Google Scholar 

  19. Bowles N, Richardson P, Olsen E, Archard L (1986) Detection of coxsackie-B virus-specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1:1120–1123

    Article  CAS  PubMed  Google Scholar 

  20. Pauschinger M, Doerner A, Kuehl U et al (1999) Enteroviral RNA replication in the myocardium of patients with left ventricular dysfunction and clinically suspected myocarditis. Circulation 99:889–895

    CAS  PubMed  Google Scholar 

  21. Kühl U, Pauschinger M, Schwimmbeck P et al (2003) Interferon-β treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 107:2793–2798

    Article  PubMed  Google Scholar 

  22. Frustaci A, Chimenti C, Calabrese F, Pieroni M, Thiene G, Maseri A (2003) Immunosuppressive therapy for active lymphocytic myocarditis: virologic and immunologic profile of responders versus non-responders. Circulation 107:857–863

    Article  PubMed  Google Scholar 

  23. Bowles N, Towbin J (2000) Molecular aspects of myocarditis. Curr Infect Dis Rep 2:308–314

    PubMed  Google Scholar 

  24. Kühl U, Pauschinger M, Bock T et al (2003) Parvovirus B19 infection mimicking acute myocardial infarction. Circulation 108:945–950

    Article  PubMed  Google Scholar 

  25. Bültmann B, Klingel K, Sotlar K et al (2003) Fatal parvovirus B19-associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell-mediated disease. Human Pathol 23:92–95

    Google Scholar 

  26. Kühl U, Pauschinger M, Noutsias M et al. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation, in press

  27. Richardson P, McKenna W, Bristow M et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    CAS  PubMed  Google Scholar 

  28. Dec G, Palacios I, Fallon J et al (1985) Active myocarditis in the spectrum of acute dilated cardiomyopathies. Clinical features, histological correlates and clinical outcome. N Engl J Med 312:885–890

    PubMed  Google Scholar 

  29. Feldman A, McNamara D (2000) Medical progress: myocarditis. N Engl J Med 343:1388–1398

    Article  CAS  PubMed  Google Scholar 

  30. Rohayem J, Dinger J, Fischer R, Klingel K, Kandolf R, Rethwilm A (2001) Fatal myocarditis associated with acute parvovirus B19 and herpesvirus 6 coinfection. J Clin Microbiol 39:4585–4587

    Article  CAS  PubMed  Google Scholar 

  31. Nigro G, Bastianon V, Colloridi V et al (2000) Human parvovirus B19 infection in infancy associated with acute and chronic lymphocytic myocarditis and high cytokine levels: report of 3 cases and review. Clin Infect Dis 31:65–69

    Article  CAS  PubMed  Google Scholar 

  32. Murry C, Jerome K, Reichenbach D (2001) Fatal parvovirus myocarditis in a 5-year-old girl. Human Pathol 32:342–345

    Article  CAS  Google Scholar 

  33. Yoshikawa T, Ihira M, Suzuki K et al (2001) Fatal acute myocarditis in an infant with human herpesvirus 6 infection. J Clin Pathol 54:792–795

    CAS  PubMed  Google Scholar 

  34. Pankuweit S, Moll R, Baandrup U, Portig I, Hufnagel G, Maisch B (2003) Prevalence of the parvovirus B19 genome in endomyocardial biopsy specimens. Human Pathol 94:497–500

    Article  Google Scholar 

  35. Klingel K, Kandolf R (1993) The role of enterovirus replication in the development of acute and chronic heart muscle disease in different immunocompetent mouse strains. Scand J Infect Dis Suppl 88:79–85

    CAS  PubMed  Google Scholar 

  36. Shioi T, Matsumori A, Sasayama S (1996) Persistent expression of cytokine in the chronic stage of viral myocarditis in mice. Circulation 94:2930–2937

    CAS  PubMed  Google Scholar 

  37. Horwitz M, LaCava A, Fine C, Rodriguez E, Ilic A, Sarvetnick N (2000) Pancreatic expression of interferon-γ protects mice from lethal coxsackievirus B3 infection and subsequent myocarditis. Nat Med 6:693–697

    Article  CAS  PubMed  Google Scholar 

  38. Tschöpe C, Bock C, Kasner M et al. High prevalence of cardiac parvovirus B19 infection in patients with isolated left ventricular diastolic dysfunction. Circulation, in press

  39. Noutsias M, Fechner H, Jonge H et al (2001) Human coxsackie-adenovirus-receptor is co-localized with Iintegrins αvβ3 and αvβ5 on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy—implications for cardiotropic viral infections. Circulation 104:275–280

    CAS  PubMed  Google Scholar 

  40. Fechner H, Noutsias M, Tschoepe C et al (2003) Induction of coxsackievirus–adenovirus-receptor expression during myocardial tissue formation and remodeling—identification of a cell–cell contact dependent regulatory mechanism. Circulation 107:876–882

    Article  PubMed  Google Scholar 

  41. Gaggar A, Shayakhmetov D, Lieber A (2003) CD46 is a cellular receptor for group B adenoviruses. Nat Med 9:1408–1412

    Article  CAS  PubMed  Google Scholar 

  42. Ulevitch R (2004) Therapeutics targeting the innate immune system. Nat Rev Immunol 4:512–520

    Article  CAS  PubMed  Google Scholar 

  43. Liu P, Aitken K, Kong YY et al (2000) The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat Med 6:429–434

    Article  CAS  PubMed  Google Scholar 

  44. Deonarain R, Cerullo D, Fuse K, Liu P, Fish E (2004) Protective role for interferon-β in coxsackievirus B3 infection. Circulation 110 (in press)

  45. Opavsky M, Martino T, Rabinovitch M et al (2002) Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis. J Clin Invest 109:1561–1569

    Article  CAS  PubMed  Google Scholar 

  46. Badorff C, Lee G, Iamphear B et al (1999) Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5:320–326

    Article  CAS  PubMed  Google Scholar 

  47. Xiong D, Lee G-H, Badorff C et al (2002) Dystrophin deficiency markedly increases enterovirus-induced cardiomyopathy: a genetic predisposition to viral heart disease. Nat Med 8:782–877

    Google Scholar 

  48. Eigenthaler M, Engelhardt S, Schinke B et al (2003) Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 285:H2471–H2481

    CAS  PubMed  Google Scholar 

  49. Arimura T, Hayashi T, Terada H et al (2004) A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J Biol Chem 279:6746–6752

    Article  CAS  PubMed  Google Scholar 

  50. Zemljic-Harpf AE, Ponrartana S, Avalos RT et al (2004) Heterozygous inactivation of the vinculin gene predisposes to stress-induced cardiomyopathy. Am J Pathol 165:1033–1044

    CAS  PubMed  Google Scholar 

  51. Hamada H, Suzuki M, Yuasa S et al (2004) Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Mol Cell Biol 24:8007–8017

    Article  CAS  PubMed  Google Scholar 

  52. Kamisago M, Solomon S, Sharma P et al (2000) Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 343:1688–1696

    Article  CAS  PubMed  Google Scholar 

  53. Bonne G, Carrier L, Richard P, Hainque B, Schwartz K (1998) Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ Res 83:580–593

    CAS  PubMed  Google Scholar 

  54. Olson T, Michels V, Thibodeau S, Tai Y-S, Keating M (1998) Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280:750–752

    Article  CAS  PubMed  Google Scholar 

  55. Mogensen J, Klausen IC, Pedersen AK et al (1999) α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 103:R39–R43

    CAS  PubMed  Google Scholar 

  56. Li D, Czernuszewicz GZ, Gonzalez O et al (2001) Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 104:2188–2193

    CAS  PubMed  Google Scholar 

  57. Hoffmann B, Schmidt-Traub H, Perrot A, Osterziel KJ, Gessner R (2001) First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Human Mutat 17:524

    Article  CAS  Google Scholar 

  58. Olson T, Kishimoto N, Whitby F, Michels V (2001) Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol 33:723–732

    Article  CAS  PubMed  Google Scholar 

  59. Thierfelder L, Watkins H, MacRae C et al (1994) α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77:701–712

    Article  PubMed  Google Scholar 

  60. Gerull B, Gramlich M, Atherton J et al (2002) Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 30:201–204

    Article  CAS  PubMed  Google Scholar 

  61. Itoh-Satoh M, Hayashi T, Nishi H et al (2002) Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 291:385–393

    Article  CAS  PubMed  Google Scholar 

  62. Mohapatra B, Jimenez S, Lin JH et al (2003) Mutations in the muscle LIM protein and α-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 80:207–215

    Article  CAS  PubMed  Google Scholar 

  63. Tsubata S, Bowles KR, Vatta M et al (2000) Mutations in the human d-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest 106:655–662

    CAS  PubMed  Google Scholar 

  64. Maeda M, Holder E, Lowes B, Valent S, Bies R (1997) Dilated cardiomyopathy associated with deficiency of the cytoskeletal protein metavinculin. Circulation 95:17–20

    CAS  PubMed  Google Scholar 

  65. Li D, Tapscoft T, Gonzalez O et al (1999) Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100:461–464

    CAS  PubMed  Google Scholar 

  66. Goldfarb LG, Park KY, Cervenakova L et al (1998) Missense mutation in desmin associated with familial cardiac and skeletal myopathy. Nat Genet 19:402–403

    Article  CAS  PubMed  Google Scholar 

  67. Fatkin D, MacRae C, Sasaki T et al (1999) Missense mutations in the rod domain of the lamin A/C gene as caused of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341:1715–1724

    CAS  PubMed  Google Scholar 

  68. Schmitt J, Kamisago M, Asahi M et al (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299:1410–1413

    Article  CAS  PubMed  Google Scholar 

  69. Haghighi K, Kolokathis F, Pater L et al (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 111:869–876

    Article  CAS  PubMed  Google Scholar 

  70. Forleo C, Resta N, Sorrentino S et al (2004) Association of β-adrenergic receptor polymorphisms and progression to heart failure in patients with idiopathic dilated cardiomyopathy. Am J Med 117:451–458

    Article  CAS  PubMed  Google Scholar 

  71. Mizon-Gerard F, de Groote P, Lamblin N et al (2004) Prognostic impact of matrix metalloproteinase gene polymorphisms in patients with heart failure according to the aetiology of left ventricular systolic dysfunction. Eur Heart J 25:688–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This publication has been supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich/Transregio 19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Poller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poller, W., Kühl, U., Tschoepe, C. et al. Genome–environment interactions in the molecular pathogenesis of dilated cardiomyopathy. J Mol Med 83, 579–586 (2005). https://doi.org/10.1007/s00109-005-0664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0664-2

Keywords

Navigation