Skip to main content
Erschienen in: Strahlentherapie und Onkologie 11/2023

Open Access 12.09.2023 | Case Study

Electroanatomical mapping after cardiac radioablation for treatment of incessant electrical storm: a case report from the RAVENTA trial

verfasst von: Lena Kaestner, MD, Judit Boda-Heggemann, MD, PhD, Hannah Fanslau, MSc, Jingyang Xie, MSc, Achim Schweikard, PhD, Frank A. Giordano, MD, Oliver Blanck, PhD, Boris Rudic, MD

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 11/2023

Abstract

Background

Electroanatomical mapping (EAM)-guided stereotactic arrhythmia radioablation (STAR) is a novel noninvasive therapy option for patients with monomorphic ventricular tachycardia (VT) refractory to antiarrhythmic drugs and/or urgent catheter ablation (CA). Data on success rates in an emergency situation such as electrical storm (ES) are rare. We present a case of a patient with an initially very poor life expectancy after extensive myocardial infarction with therapy–resistant ES, not amendable for further antiarrhythmic drug therapy, implantable cardioverter-defibrillator implantation, or repeated CA who was introduced to the radiation oncology department for emergency STAR as a bail-out therapy.

Methods

Target volume definition and transfer from EAM to CT were validated and quality assured with a semi-automatic, dedicated visualization tool (CARDIO-RT). Emergency STAR was performed with 25 Gy in the framework of the RAVENTA study. The VT burden gradually decreased after STAR; however, a second VT morphology occurred, which was successfully treated with EAM-guided CA 12 days after STAR.

Results

The second EAM-guided CA showed areas of low voltage in the irradiated segments, indicating a precise targeting and early functional response to STAR. The patient remained free of any VT recurrence or any radiation-related toxicities and in good general condition during the recent follow-up of 18 months.

Conclusion

The case highlights the possible approach, caveats, difficulties, and prognosis of a patient severely affected by therapy-resistant VT in whom CA could not lead to VT suppression. Further studies of putative mechanisms of STAR in the acute and chronic phase of this novel therapy are warranted.

Introduction

Electrical storm (ES) is a life-threatening cardiac condition defined by the occurrence of three or more episodes of sustained ventricular tachycardia (VT) within 24 h. Recommended treatment options comprise direct current cardioversion, antiarrhythmic drugs, urgent catheter ablation (CA), and anti-arrhythmic surgery [1]. Generally, ES responds poorly to therapy and is associated with a high recurrence rate and mortality. Cardiac radioablation (stereotactic arrhythmia radioablation, STAR) has effectively been used as a bail-out or emergency treatment for patients with ES [2].
Electroanatomical mapping (EAM)-guided STAR is a novel noninvasive therapy option for patients with monomorphic VT refractory or ineligible to antiarrhythmic drugs and/or CA. A special challenge during STAR is the target definition on EAM and the transfer of the clinical target volume (CTV) from the EAM system to the planning computed tomography (CT), which, if performed manually, is highly user dependent [3]. To semi-automate this process, EAM-to-CT transfer tools have been introduced by different research groups, which will probably facilitate precision and efficacy [4, 5]. Since the first case series published by Cuculich et al. in 2017, an increasing number of patients have successfully been treated with predominantly elective STAR [6]. However, data on success rates in the emergency situation such as ES are rare [2]. Additionally, there is an ongoing debate on whether STAR effects predominate in the early or late posttreatment period and whether radiation-induced fibrosis or radiation-induced reprogramming of cardiac conduction contributes to therapy success [7, 8].
We present the case of a patient with therapy-resistant ES, not amendable for further antiarrhythmic drug therapy and CA, who was ultimately treated with emergency STAR in the framework of the RAVENTA study [9]. A secondary monomorphic VT emerged 11 days after STAR and was treated with EAM-guided CA. This case enables an analysis of the short-term effects after STAR with an electrophysiological complete response directly confirmed by repeated EAM. Additionally, the manual transfer of the CTV from EAM to CT was validated and quality assured with a semi-automatic, dedicated STAR visualization tool (CARDIO-RT).

Case report

A 63-year-old female patient with history of smoking, obesity, diabetes mellitus, and coronary heart disease was admitted with subacute ST elevation due to a posterior wall myocardial infarction caused by a subtotal occlusion of the proximal right coronary artery, which was successfully revascularized by percutaneous coronary intervention (PCI) 14 days before eventually being treated with STAR. Shortly thereafter she developed cardiogenic shock and was intubated. Inotropes were started (dobutamine, levosimendan) for treatment of the acutely decompensated congestive heart failure. Subsequently, the patient developed an ES with frequent episodes of monomorphic VT (220 bpm) treated with external cardioversion. Amiodarone was first introduced, followed by ajmaline; however, the VT recurrence could not be abolished. Another PCI of the circumflex artery and left anterior descending artery was performed 3 days before STAR, without effect on VT suppression. An implantable cardioverter–defibrillator (ICD; Charisma DR, Boston Scientific, Marlborough, MA, USA) was implanted for secondary prevention.

Pre-STAR EAM during first CA

An EAM was performed, 2 days prior to STAR, with CARTO3 (Biosense Webster, Diamond Bar, CA, USA), revealing a large endocardial scar area in the left ventricle. Extensive CA of late potentials at the inferobasal and midventricular septal portion of the left ventricle was administered, rendering the VT non-inducible by the end of the procedure. A few hours later, VT re-occurred prompting several ICD shocks. Medication with mexiletine and lidocaine was started, together with a percutaneous stellate ganglion block, which suppressed the VT without total abolishment. The 12-lead ECGs of the recurrent VT pattern were analyzed, and segment 2 and segment 1 were identified as possible exit sites of the VT.

Emergency STAR

As repeated CA was not deemed to be successful, the patient was transferred for emergency STAR after acquiring emergency Institutional Review Board approval in the framework of the RAVENTA study. After performing a planning CT during mechanical ventilation with low tidal volume and high frequency to limit chest motion (Brilliance Big Bore, Philips, Hamburg, Germany), images were registered with an ECG-gated contrast-enhanced CT scan (Velocity Vx, Varian, Palo Alto, CA, USA). Data of the previously performed EAM were used to localize the VT exit site, based on a visual alignment of the presumed origin of VT (Fig. 1). At first, the VT exit site was transferred manually from the EAM to the CT. Additionally, a quality assessment was performed via the semi-automatic CTV transfer tool CARDIO-RT (CARDIO-RT is available free of charge upon request from the authors; [3]). A CTV-to-PTV (planning target volume) margin of 7 mm was applied, and a STAR plan was calculated (Monaco V, Elekta, Stockholm, Sweden) considering the dose and constraint recommendations of the RAVENTA study protocol [10]. A single fraction of 25 Gy prescribed to 95% of the PTV with 6 MV flattening-filter-free (FFF) beams with previous cone-beam CT-based image guidance was delivered on a linear accelerator (Versa HD, Elekta, Stockholm, Sweden). During beam application, mechanical ventilation with low tidal volume and high frequency ventilation was used again to decrease chest excursions and thereby reduce the respiratory motion-based intrafractional error.

Post-STAR EAM during second CA

After STAR, the VT burden gradually decreased over 4 days. At 5 days after STAR, a second VT morphology occurred repeatedly, now originating from the mid-inferior septum and the septal apex (segments 9 and 14). We did not observe any VT recurrences of the same morphology as the pre-STAR type. Another CA targeting the apex and midventricular septum was performed that successfully treated the second VT pattern. At 10 days after STAR, endocardial EAM showed an extensive area of low voltage (< 0.3 mV) in segments 2 and 1. This area corresponds to the region previously treated with STAR, indicating the precise targeting and early functional response to STAR (Fig. 2).

Outcome after emergency cardiac STAR and CA

Antiarrhythmic drug therapy was de-escalated from amiodarone, lidocaine, beta-blockers, and mexiletine to amiodarone and beta-blockers (Fig. 3). During her in-hospital treatment, the patient developed fever and bacteremia with presumed defibrillator lead-associated endocarditis (not related to radiotherapy). The ICD system was successfully extracted, and the patient received antibiotic treatment prior to ICD reinsertion 4 weeks later. Afterwards, the patient was transferred to the rehabilitation clinic and remained in ambulatory care, free of any VT recurrence or any radiation-related toxicities and in good general condition during the recent follow-up of 18 months. Cardiac function stayed stable with moderately reduced left ventricular ejection fraction (42%) and inferior wall akinesia.

Discussion

We present a case report of a patient with repeated EAM before and after emergency STAR for therapy-refractory ES. In addition to already published case reports and case series [2, 11], this case report presents an analysis of the short-term post-STAR functional effect on EAM and a first impression on quality assessment of manual CTV transfer from EAM to CT with a semi-automated transfer tool.
Emergency STAR was performed on a patient with ES and failure of previous antiarrhythmic medication, ICD implantation, and CA. Krug et al. strongly agree that patients with the clinical constellation of structural heart disease, ICD, recurrent monomorphic VT and ES, and recurrence after CA are eligible for STAR [12]. However, there was no consensus on whether life expectancy < 6 months should be a general contraindication. In this case, the indication for STAR was made despite a poor prognosis, eventually saving the patient’s life. In this way, STAR may prolong life significantly for selected patients with initial poor life expectancy and should be considered as a treatment option.
With STAR, a high-dose radiation of 25 Gy has to be applied in only one treatment fraction. Therefore, precise target definition is crucial for treatment success. Significant challenges occur when the expected target volume needs to be delineated during EAM and transferred to the planning CT. Traditionally, VT ablation is performed in areas of low voltage (0.2–0.8 mV) representing critical isthmus and exit sites of clinical VT, identified with 12-lead ECG. This is usually an iterative and repetitive process with a defined endpoint (non-inducibility of clinical VT). For STAR, a definitive and circumscribed target area needs to be defined by cardiologists. The next crucial step is the transfer of target volume defined in the EAM to the planning CT. Semi-automated tools such as CARDIO-RT used in this case help to compensate manual errors. These tools are currently not commercially available and undergo continuous development and improvement. Interpretation of the target volume depends on a multidisciplinary team approach involving cardiologists and radiation oncologists. Thus, a uniform definition of a target volume has to be standardized in future for further improvement of treatment quality.
In the repeat EAM 10 days after STAR, we noted significant low-voltage areas in segments 1 and 2, which corresponded to the area treated with STAR previously. The mechanisms leading to such a low-voltage area after STAR are not yet fully understood. In the acute and subacute phase after STAR, experimental and clinical studies identified different cellular changes including cellular necrosis and apoptosis, vascular effects, as well as acute mitochondrial damage [13]. Zhang et al. found increases of Nav1.5 and Cx43 and concluded that radiation-induced reprogramming of cardiac conduction is a potential treatment strategy [7, 8]. Initial clinical evidence showed changes of ventricular conduction velocity in myocardium subject to 25 Gy or additional ablation modalities [14]; however, all three patients underwent multiple ablation procedures and the time until post-STAR EAM-guided CA ranged from 32 to 395 days. Benali et al. reported on a patient with reduction in bipolar voltages for myocardium receiving ≥ 15 Gy 8 months after STAR [15]. These findings suggest that the observed low-voltage area might be due to changed conduction velocity rather than occurrence of necrosis. This is further supported by the observation that a radiation dose of 25 Gy does not seem to be sufficient to create necrosis in myocytes [16].
Since areas of low voltage assessed in EAM can result from, e.g., changes in conduction velocity, necrosis, as well as fibrosis, we cannot exclude the possibility that, apart from STAR, the documented low-voltage area could also be a result of the previous myocardial infarction. However, the exact location corresponding to targeted areas 1 and 2 and its sharp delineation are favorably interpreted as an effect of STAR rather than acute fibrosis due to recent myocardial infarction.

Conclusion

Stereotactic arrhythmia radioablation (STAR) is an expedient therapy alternative even in severe cardiac conditions such as electrical storm (ES) in cases of failed or ineffective catheter ablation (CA). Our case highlights the possible approach, caveats, difficulties, and prognosis in a patient severely affected by therapy-resistant ventricular tachycardia (VT) in whom CA could not lead to VT suppression. Here, STAR led to a significant circumscribed low-voltage area captured during electroanatomical mapping 12 days after STAR. Further studies of putative mechanisms of STAR in the acute and chronic phase of this novel therapy are warranted.

Acknowledgements

We thank Prof. Dr. med. Daniel Buergy, Kerstin Siebenlist, Said Tawackoli and Christine Frömmrich-Ross (Radiation Oncology, Mannheim, Germany) for their assistance during treatment planning and beam application, Dr. med. Julia Schäfer and Dr. med. Simone Britsch (Cardiology, Mannheim) for the intensive care during planning CT and beam delivery, Daniela Stuber (Radiation Oncology, Mannheim) for her help with study coordiation and emergency Institutional Review Boards in Mannheim and Kiel on short notice. We also kindly thank Prof. Dr. med. Volker Tronnier (Neurosurgery, Lübeck, Germany), Prof. Dr. med. Joachim Ehrlich (Cardiology, Wiesbaden, Germany) and Prof. Dr. med. Thomas Brunner (Radiation Oncology, Graz, Austria) for reviewing the case within the data and safety monitoring board (DSMB) of the RAVENTA study and Christian Baer (Zentrum für klinische Studien, Lübeck) for monitoring the case.

Funding

The RAVENTA study is part of the EU-Horizon-2020 STOPSTORM consortium project (Grant Agreement Number 945119) and the participating centers in Germany have received funding for this project related to STAR, but not directly for the RAVENTA study.

Declarations

Conflict of interest

Financial interests: L. Kaestner: Speaker honoraria AstraZeneca GmbH. J. Boda-Heggemann: EBAMed consulting fees outside of the study, Elekta research grant outside the study, speaker honoraria AstraZeneca GmbH. F.A. Giordano: Honoraria, research grants and/or travel support from Carl Zeiss Meditec AG, TME Pharma AG, Guerbet SA, Cureteq AG, Bristol-Myers Squibb, AstraZeneca GmbH, FoMF GmbH, MEDAC GmbH, Elsevier GmbH and stock/ownership from TME Pharma AG and Implacit GmbH outside the submitted work. Non-financial interests: O. Blanck is a section editor in the journal Strahlentherapie und Onkologie. H. Fanslau, J. Xie, A. Schweikard and B. Rudic declare that they have no competing interests.

Ethical standards

Ethics approval: Approval was obtained from the ethics committee of University Heidelberg-Mannheim and Kiel. The procedures used in this study adhere to the tenets of the Declaration of Helsinki. Consent to participate/publish: Informed consent was obtained from all individual participants included in the study. The participant has consented to the submission of the case report to the journal.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Strahlentherapie und Onkologie

Print-Titel

•Übersichten, Originalien, Kasuistiken

•Kommentierte Literatur aus der Radioonkologie, Strahlenbiologie und -physik

Literatur
1.
Zurück zum Zitat Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, Kirchhof P, Kjeldsen K, Kuck KH, Hernandez-Madrid A, Nikolaou N, Norekval TM, Spaulding C, Van Veldhuisen DJ, Group ESCSD (2015) 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 36:2793–2867. https://doi.org/10.1093/eurheartj/ehv316CrossRefPubMed Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, Kirchhof P, Kjeldsen K, Kuck KH, Hernandez-Madrid A, Nikolaou N, Norekval TM, Spaulding C, Van Veldhuisen DJ, Group ESCSD (2015) 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 36:2793–2867. https://​doi.​org/​10.​1093/​eurheartj/​ehv316CrossRefPubMed
3.
Zurück zum Zitat Boda-Heggemann J, Blanck O, Mehrhof F, Ernst F, Buergy D, Fleckenstein J, Tulumen E, Krug D, Siebert FA, Zaman A, Kluge AK, Parwani AS, Andratschke N, Mayinger MC, Ehrbar S, Saguner AM, Celik E, Baus WW, Stauber A, Vogel L, Schweikard A, Budach V, Dunst J, Boldt LH, Bonnemeier H, Rudic B (2021) Interdisciplinary clinical target volume generation for cardiac radioablation: multicenter benchmarking for the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial. Int J Radiat Oncol Biol Phys 110:745–756. https://doi.org/10.1016/j.ijrobp.2021.01.028CrossRefPubMed Boda-Heggemann J, Blanck O, Mehrhof F, Ernst F, Buergy D, Fleckenstein J, Tulumen E, Krug D, Siebert FA, Zaman A, Kluge AK, Parwani AS, Andratschke N, Mayinger MC, Ehrbar S, Saguner AM, Celik E, Baus WW, Stauber A, Vogel L, Schweikard A, Budach V, Dunst J, Boldt LH, Bonnemeier H, Rudic B (2021) Interdisciplinary clinical target volume generation for cardiac radioablation: multicenter benchmarking for the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial. Int J Radiat Oncol Biol Phys 110:745–756. https://​doi.​org/​10.​1016/​j.​ijrobp.​2021.​01.​028CrossRefPubMed
5.
Zurück zum Zitat Hohmann S, Henkenberens C, Zormpas C, Christiansen H, Bauersachs J, Duncker D, Veltmann C (2020) A novel open-source software-based high-precision workflow for target definition in cardiac radioablation. J Cardiovasc Electrophysiol 31:2689–2695. https://doi.org/10.1111/jce.14660CrossRefPubMed Hohmann S, Henkenberens C, Zormpas C, Christiansen H, Bauersachs J, Duncker D, Veltmann C (2020) A novel open-source software-based high-precision workflow for target definition in cardiac radioablation. J Cardiovasc Electrophysiol 31:2689–2695. https://​doi.​org/​10.​1111/​jce.​14660CrossRefPubMed
8.
Zurück zum Zitat Zhang DM, Navara R, Yin T, Szymanski J, Goldsztejn U, Kenkel C, Lang A, Mpoy C, Lipovsky CE, Qiao Y, Hicks S, Li G, Moore KMS, Bergom C, Rogers BE, Robinson CG, Cuculich PS, Schwarz JK, Rentschler SL (2021) Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat Commun 12:5558. https://doi.org/10.1038/s41467-021-25730-0CrossRefPubMedPubMedCentral Zhang DM, Navara R, Yin T, Szymanski J, Goldsztejn U, Kenkel C, Lang A, Mpoy C, Lipovsky CE, Qiao Y, Hicks S, Li G, Moore KMS, Bergom C, Rogers BE, Robinson CG, Cuculich PS, Schwarz JK, Rentschler SL (2021) Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat Commun 12:5558. https://​doi.​org/​10.​1038/​s41467-021-25730-0CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Blanck O, Buergy D, Vens M, Eidinger L, Zaman A, Krug D, Rudic B, Boda-Heggemann J, Giordano FA, Boldt LH, Mehrhof F, Budach V, Schweikard A, Olbrich D, König IR, Siebert FA, Vonthein R, Dunst J, Bonnemeier H (2020) Radiosurgery for ventricular tachycardia: preclinical and clinical evidence and study design for a German multi-center multi-platform feasibility trial (RAVENTA). Clin Res Cardiol 109:1319–1332. https://doi.org/10.1007/s00392-020-01650-9CrossRefPubMedPubMedCentral Blanck O, Buergy D, Vens M, Eidinger L, Zaman A, Krug D, Rudic B, Boda-Heggemann J, Giordano FA, Boldt LH, Mehrhof F, Budach V, Schweikard A, Olbrich D, König IR, Siebert FA, Vonthein R, Dunst J, Bonnemeier H (2020) Radiosurgery for ventricular tachycardia: preclinical and clinical evidence and study design for a German multi-center multi-platform feasibility trial (RAVENTA). Clin Res Cardiol 109:1319–1332. https://​doi.​org/​10.​1007/​s00392-020-01650-9CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kluge A, Ehrbar S, Grehn M, Fleckenstein J, Baus WW, Siebert FA, Schweikard A, Andratschke N, Mayinger MC, Boda-Heggemann J, Buergy D, Celik E, Krug D, Kovacs B, Saguner AM, Rudic B, Bergengruen P, Boldt LH, Stauber A, Zaman A, Bonnemeier H, Dunst J, Budach V, Blanck O, Mehrhof F (2022) Treatment planning for cardiac radioablation: multicenter multiplatform benchmarking for the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial. Int J Radiat Oncol Biol Phys 114:360–372. https://doi.org/10.1016/j.ijrobp.2022.06.056CrossRefPubMed Kluge A, Ehrbar S, Grehn M, Fleckenstein J, Baus WW, Siebert FA, Schweikard A, Andratschke N, Mayinger MC, Boda-Heggemann J, Buergy D, Celik E, Krug D, Kovacs B, Saguner AM, Rudic B, Bergengruen P, Boldt LH, Stauber A, Zaman A, Bonnemeier H, Dunst J, Budach V, Blanck O, Mehrhof F (2022) Treatment planning for cardiac radioablation: multicenter multiplatform benchmarking for the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial. Int J Radiat Oncol Biol Phys 114:360–372. https://​doi.​org/​10.​1016/​j.​ijrobp.​2022.​06.​056CrossRefPubMed
11.
Zurück zum Zitat Krug D, Blanck O, Demming T, Dottermusch M, Koch K, Hirt M, Kotzott L, Zaman A, Eidinger L, Siebert FA, Dunst J, Bonnemeier H (2020) Stereotactic body radiotherapy for ventricular tachycardia (cardiac radiosurgery) : first-in-patient treatment in Germany. Strahlenther Onkol 196:23–30. https://doi.org/10.1007/s00066-019-01530-wCrossRefPubMed Krug D, Blanck O, Demming T, Dottermusch M, Koch K, Hirt M, Kotzott L, Zaman A, Eidinger L, Siebert FA, Dunst J, Bonnemeier H (2020) Stereotactic body radiotherapy for ventricular tachycardia (cardiac radiosurgery) : first-in-patient treatment in Germany. Strahlenther Onkol 196:23–30. https://​doi.​org/​10.​1007/​s00066-019-01530-wCrossRefPubMed
12.
Zurück zum Zitat Krug D, Blanck O, Andratschke N, Guckenberger M, Jumeau R, Mehrhof F, Boda-Heggemann J, Seidensaal K, Dunst J, Pruvot E, Scholz E, Saguner AM, Rudic B, Boldt LH, Bonnemeier H (2021) Recommendations regarding cardiac stereotactic body radiotherapy for treatment refractory ventricular tachycardia. Heart Rhythm 18:2137–2145. https://doi.org/10.1016/j.hrthm.2021.08.004CrossRefPubMed Krug D, Blanck O, Andratschke N, Guckenberger M, Jumeau R, Mehrhof F, Boda-Heggemann J, Seidensaal K, Dunst J, Pruvot E, Scholz E, Saguner AM, Rudic B, Boldt LH, Bonnemeier H (2021) Recommendations regarding cardiac stereotactic body radiotherapy for treatment refractory ventricular tachycardia. Heart Rhythm 18:2137–2145. https://​doi.​org/​10.​1016/​j.​hrthm.​2021.​08.​004CrossRefPubMed
14.
15.
Zurück zum Zitat Benali K, Rigal L, Simon A, Bellec J, Jais P, Kamakura T, Robinson CG, Cuculich P, De Crevoisier R, Martins RP (2022) Correlation between the radiation dose and myocardial remodeling after stereotactic radiation therapy for ventricular tachycardia: first assessment of the dose-effect relationship in humans. Heart Rhythm 19:1559–1560. https://doi.org/10.1016/j.hrthm.2022.04.017CrossRefPubMed Benali K, Rigal L, Simon A, Bellec J, Jais P, Kamakura T, Robinson CG, Cuculich P, De Crevoisier R, Martins RP (2022) Correlation between the radiation dose and myocardial remodeling after stereotactic radiation therapy for ventricular tachycardia: first assessment of the dose-effect relationship in humans. Heart Rhythm 19:1559–1560. https://​doi.​org/​10.​1016/​j.​hrthm.​2022.​04.​017CrossRefPubMed
Metadaten
Titel
Electroanatomical mapping after cardiac radioablation for treatment of incessant electrical storm: a case report from the RAVENTA trial
verfasst von
Lena Kaestner, MD
Judit Boda-Heggemann, MD, PhD
Hannah Fanslau, MSc
Jingyang Xie, MSc
Achim Schweikard, PhD
Frank A. Giordano, MD
Oliver Blanck, PhD
Boris Rudic, MD
Publikationsdatum
12.09.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 11/2023
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-023-02136-z

Weitere Artikel der Ausgabe 11/2023

Strahlentherapie und Onkologie 11/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.