Skip to main content

10.05.2024 | METHODS

Learning about treatment effects in a new target population under transportability assumptions for relative effect measures

verfasst von: Issa J. Dahabreh, Sarah E. Robertson, Jon A. Steingrimsson

Erschienen in: European Journal of Epidemiology

Einloggen, um Zugang zu erhalten

Abstract

Investigators often believe that relative effect measures conditional on covariates, such as risk ratios and mean ratios, are “transportable” across populations. Here, we examine the identification of causal effects in a target population using an assumption that conditional relative effect measures are transportable from a trial to the target population. We show that transportability for relative effect measures is largely incompatible with transportability for difference effect measures, unless the treatment has no effect on average or one is willing to make even stronger transportability assumptions that imply the transportability of both relative and difference effect measures. We then describe how marginal (population-averaged) causal estimands in a target population can be identified under the assumption of transportability of relative effect measures, when we are interested in the effectiveness of a new experimental treatment in a target population where the only treatment in use is the control treatment evaluated in the trial. We extend these results to consider cases where the control treatment evaluated in the trial is only one of the treatments in use in the target population, under an additional partial exchangeability assumption in the target population (i.e., an assumption of no unmeasured confounding in the target population with respect to potential outcomes under the control treatment in the trial). We also develop identification results that allow for the covariates needed for transportability of relative effect measures to be only a small subset of the covariates needed to control confounding in the target population. Last, we propose estimators that can be easily implemented in standard statistical software and illustrate their use using data from a comprehensive cohort study of stable ischemic heart disease.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Schwartz LM, Woloshin S, Dvorin EL, Welch HG. Ratio measures in leading medical journals: structured review of accessibility of underlying absolute risks. BMJ. 2006;333(7581):1248.CrossRefPubMedPubMedCentral Schwartz LM, Woloshin S, Dvorin EL, Welch HG. Ratio measures in leading medical journals: structured review of accessibility of underlying absolute risks. BMJ. 2006;333(7581):1248.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Spiegelman D, VanderWeele TJ. Evaluating public health interventions: 6. modeling ratios or differences? let the data tell us. American Journal of Public Health. 2017;107(7):1087–91. Spiegelman D, VanderWeele TJ. Evaluating public health interventions: 6. modeling ratios or differences? let the data tell us. American Journal of Public Health. 2017;107(7):1087–91.
4.
Zurück zum Zitat Deeks JJ, Higgins JP, Altman DG, Group CSM. “Chapter 10: Analysing data and undertaking meta-analyses,” Cochrane Handbook for Systematic Reviews of Interventions, , 2019; pp. 241–284. Deeks JJ, Higgins JP, Altman DG, Group CSM. “Chapter 10: Analysing data and undertaking meta-analyses,” Cochrane Handbook for Systematic Reviews of Interventions, , 2019; pp. 241–284.
5.
Zurück zum Zitat Dahabreh IJ, Robertson SE, Steingrimsson JA, Stuart EA, Hernán MA. Extending inferences from a randomized trial to a new target population. Statistics in Medicine. 2020;39(14):1999–2014.CrossRefPubMed Dahabreh IJ, Robertson SE, Steingrimsson JA, Stuart EA, Hernán MA. Extending inferences from a randomized trial to a new target population. Statistics in Medicine. 2020;39(14):1999–2014.CrossRefPubMed
6.
Zurück zum Zitat Pearl J. Generalizing experimental findings. Journal of Causal Inference. 2015;3(2):259–66.CrossRef Pearl J. Generalizing experimental findings. Journal of Causal Inference. 2015;3(2):259–66.CrossRef
7.
Zurück zum Zitat Huitfeldt A, Swanson SA, Stensrud MJ, Suzuki E. Effect heterogeneity and variable selection for standardizing causal effects to a target population. European Journal of Epidemiology. 2019;34(12):1119–29.CrossRefPubMed Huitfeldt A, Swanson SA, Stensrud MJ, Suzuki E. Effect heterogeneity and variable selection for standardizing causal effects to a target population. European Journal of Epidemiology. 2019;34(12):1119–29.CrossRefPubMed
8.
Zurück zum Zitat Huitfeldt A, Stensrud MJ, Suzuki E. On the collapsibility of measures of effect in the counterfactual causal framework. Emerging Themes in Epidemiology. 2019;16(1):1–5.CrossRefPubMedPubMedCentral Huitfeldt A, Stensrud MJ, Suzuki E. On the collapsibility of measures of effect in the counterfactual causal framework. Emerging Themes in Epidemiology. 2019;16(1):1–5.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Dahabreh IJ, Haneuse SJ-P, Robins JM, Robertson SE, Buchanan AL, Stuart EA, Hernán MA. Study designs for extending causal inferences from a randomized trial to a target population. American Journal of Epidemiology. 2021;190(8):1632–42. Dahabreh IJ, Haneuse SJ-P, Robins JM, Robertson SE, Buchanan AL, Stuart EA, Hernán MA. Study designs for extending causal inferences from a randomized trial to a target population. American Journal of Epidemiology. 2021;190(8):1632–42.
10.
Zurück zum Zitat Dahabreh IJ, Hernán MA. Extending inferences from a randomized trial to a target population. European Journal of Epidemiology. 2019;34(8):719–22.CrossRefPubMed Dahabreh IJ, Hernán MA. Extending inferences from a randomized trial to a target population. European Journal of Epidemiology. 2019;34(8):719–22.CrossRefPubMed
11.
Zurück zum Zitat Splawa-Neyman J. On the application of probability theory to agricultural experiments. essay on principles. section 9. [Translated from Splawa-Neyman, J (1923) in Roczniki Nauk Rolniczych Tom X, 1–51]. Statistical Science. 1990;5(4):465–72. Splawa-Neyman J. On the application of probability theory to agricultural experiments. essay on principles. section 9. [Translated from Splawa-Neyman, J (1923) in Roczniki Nauk Rolniczych Tom X, 1–51]. Statistical Science. 1990;5(4):465–72.
12.
Zurück zum Zitat Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology. 1974;66(5):688–701.CrossRef Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology. 1974;66(5):688–701.CrossRef
13.
Zurück zum Zitat Robins JM, Greenland S. Causal inference without counterfactuals: comment. Journal of the American Statistical Association. 2000;95(450):431–5.CrossRef Robins JM, Greenland S. Causal inference without counterfactuals: comment. Journal of the American Statistical Association. 2000;95(450):431–5.CrossRef
14.
Zurück zum Zitat Huitfeldt A, Goldstein A, Swanson S. A. “The choice of effect measure for binary outcomes: Introducing counterfactual outcome state transition parameters,” Epidemiologic Methods, 2018; vol. 7, no. 1, Huitfeldt A, Goldstein A, Swanson S. A. “The choice of effect measure for binary outcomes: Introducing counterfactual outcome state transition parameters,” Epidemiologic Methods, 2018; vol. 7, no. 1,
15.
Zurück zum Zitat Dahabreh IJ, Robins JM, Haneuse SJ-P, Hernán MA. “Generalizing causal inferences from randomized trials: counterfactual and graphical identification,” arXiv preprint arXiv:1906.10792, 2019 (accessed: 11/03/2020). Dahabreh IJ, Robins JM, Haneuse SJ-P, Hernán MA. “Generalizing causal inferences from randomized trials: counterfactual and graphical identification,” arXiv preprint arXiv:​1906.​10792, 2019 (accessed: 11/03/2020).
16.
Zurück zum Zitat Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations: the ACTG 320 trial. American Journal of Epidemiology. 2010;172(1):107–15.CrossRefPubMedPubMedCentral Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations: the ACTG 320 trial. American Journal of Epidemiology. 2010;172(1):107–15.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Dahabreh IJ, Robertson SE, Tchetgen Tchetgen EJ, Stuart EA, Hernán MA. Generalizing causal inferences from individuals in randomized trials to all trial-eligible individuals. Biometrics. 2018;75(2):685–94.CrossRef Dahabreh IJ, Robertson SE, Tchetgen Tchetgen EJ, Stuart EA, Hernán MA. Generalizing causal inferences from individuals in randomized trials to all trial-eligible individuals. Biometrics. 2018;75(2):685–94.CrossRef
18.
Zurück zum Zitat Rudolph KE, van der Laan MJ. “Robust estimation of encouragement design intervention effects transported across sites,’’ Journal of the Royal Statistical Society. Series B (Statistical Methodology). 2017;79(5):1509–25.CrossRefPubMed Rudolph KE, van der Laan MJ. “Robust estimation of encouragement design intervention effects transported across sites,’’ Journal of the Royal Statistical Society. Series B (Statistical Methodology). 2017;79(5):1509–25.CrossRefPubMed
19.
Zurück zum Zitat Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ. Diagnosing and responding to violations in the positivity assumption. Statistical Methods in Medical Research. 2012;21(1):31–54.CrossRefPubMed Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ. Diagnosing and responding to violations in the positivity assumption. Statistical Methods in Medical Research. 2012;21(1):31–54.CrossRefPubMed
20.
Zurück zum Zitat Robins JM, Ritov Y. Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. Statistics in Medicine. 1997;16(3):285–319.CrossRefPubMed Robins JM, Ritov Y. Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. Statistics in Medicine. 1997;16(3):285–319.CrossRefPubMed
21.
Zurück zum Zitat Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J. Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal. 2018;21(1):C1-68.CrossRef Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J. Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal. 2018;21(1):C1-68.CrossRef
22.
Zurück zum Zitat Stefanski LA, Boos DD. The calculus of M-estimation. The American Statistician. 2002;56(1):29–38.CrossRef Stefanski LA, Boos DD. The calculus of M-estimation. The American Statistician. 2002;56(1):29–38.CrossRef
23.
Zurück zum Zitat Efron B, Tibshirani RJ. An introduction to the bootstrap. No. 57 in Monographs on Statistics and Applied Probability, Boca Raton, Florida, USA: Chapman & Hall/CRC, 1993; Efron B, Tibshirani RJ. An introduction to the bootstrap. No. 57 in Monographs on Statistics and Applied Probability, Boca Raton, Florida, USA: Chapman & Hall/CRC, 1993;
24.
Zurück zum Zitat Greenland S. Interval estimation by simulation as an alternative to and extension of confidence intervals. International Journal of Epidemiology. 2004;33(6):1389–97.CrossRefPubMed Greenland S. Interval estimation by simulation as an alternative to and extension of confidence intervals. International Journal of Epidemiology. 2004;33(6):1389–97.CrossRefPubMed
25.
Zurück zum Zitat Steingrimsson JA, Gatsonis C, Dahabreh IJ. “Transporting a prediction model for use in a new target population,” arXiv preprint arXiv:2101.11182, 2021. Steingrimsson JA, Gatsonis C, Dahabreh IJ. “Transporting a prediction model for use in a new target population,” arXiv preprint arXiv:​2101.​11182, 2021.
26.
Zurück zum Zitat Shimodaira H. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference. 2000;90(2):227–44.CrossRef Shimodaira H. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference. 2000;90(2):227–44.CrossRef
27.
Zurück zum Zitat Sugiyama M, Kawanabe M. Machine learning in non-stationary environments: introduction to covariate shift adaptation. MIT press Cambridge Massachusetts, 2012. Sugiyama M, Kawanabe M. Machine learning in non-stationary environments: introduction to covariate shift adaptation. MIT press Cambridge Massachusetts, 2012.
28.
Zurück zum Zitat CASS Principal Investigators. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass surgery: comparability of entry characteristics and survival in randomized patients and nonrandomized patients meeting randomization criteria. Journal of the American College of Cardiology. 1984;3(1):114–28.CrossRef CASS Principal Investigators. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass surgery: comparability of entry characteristics and survival in randomized patients and nonrandomized patients meeting randomization criteria. Journal of the American College of Cardiology. 1984;3(1):114–28.CrossRef
29.
Zurück zum Zitat William J, Russell R, Nicholas T, et al. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass surgery. Circulation. 1983;68(5):939–50.CrossRef William J, Russell R, Nicholas T, et al. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass surgery. Circulation. 1983;68(5):939–50.CrossRef
30.
Zurück zum Zitat Miettinen OS. Standardization of risk ratios. American Journal of Epidemiology. 1972;96(6):383–8.CrossRefPubMed Miettinen OS. Standardization of risk ratios. American Journal of Epidemiology. 1972;96(6):383–8.CrossRefPubMed
31.
Zurück zum Zitat Greenland S. Interpretation and estimation of summary ratios under heterogeneity. Statistics in Medicine. 1982;1(3):217–27.CrossRefPubMed Greenland S. Interpretation and estimation of summary ratios under heterogeneity. Statistics in Medicine. 1982;1(3):217–27.CrossRefPubMed
32.
Zurück zum Zitat van Aalst R, Thommes E, Postma M, Chit A, Dahabreh IJ. On the causal interpretation of rate-change methods: the prior event rate ratio and rate difference. American Journal of Epidemiology. 2021;190(1):142–9.CrossRefPubMed van Aalst R, Thommes E, Postma M, Chit A, Dahabreh IJ. On the causal interpretation of rate-change methods: the prior event rate ratio and rate difference. American Journal of Epidemiology. 2021;190(1):142–9.CrossRefPubMed
33.
Zurück zum Zitat Hong J-L, Webster-Clark M, Jonsson Funk M, Stürmer T, Dempster SE, Cole SR, Herr I, LoCasale R. Comparison of methods to generalize randomized clinical trial results without individual-level data for the target population. American Journal of Epidemiology. 2019;188(2):426–37.CrossRefPubMed Hong J-L, Webster-Clark M, Jonsson Funk M, Stürmer T, Dempster SE, Cole SR, Herr I, LoCasale R. Comparison of methods to generalize randomized clinical trial results without individual-level data for the target population. American Journal of Epidemiology. 2019;188(2):426–37.CrossRefPubMed
34.
Zurück zum Zitat Dahabreh IJ, Robertson SE, Hernán MA. “Generalizing and transporting inferences about the effects of treatment assignment subject to non-adherence,” arXiv preprint arXiv:2211.04876, 2022. Dahabreh IJ, Robertson SE, Hernán MA. “Generalizing and transporting inferences about the effects of treatment assignment subject to non-adherence,” arXiv preprint arXiv:​2211.​04876, 2022.
Metadaten
Titel
Learning about treatment effects in a new target population under transportability assumptions for relative effect measures
verfasst von
Issa J. Dahabreh
Sarah E. Robertson
Jon A. Steingrimsson
Publikationsdatum
10.05.2024
Verlag
Springer Netherlands
Erschienen in
European Journal of Epidemiology
Print ISSN: 0393-2990
Elektronische ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-023-01067-4